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Bifurcations in a parametrically forced magnetic pendulum
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An experimental study of bifurcations associated with the stability of stationary g&Rts in a parametri-
cally forced magnetic pendulum, and a comparison of its results with numerical results, are presented. The
critical values for which the SP’s lose or gain their stability are experimentally measured by varying the two
parameter$) (the normalized natural frequencandA (the normalized driving amplitudelt is observed that,
when the amplitudé exceeds a critical value, the normal SP with 0 (6 is the angle between the permanent
magnet and the magnetic fi¢ldecomes unstable either by a period-doubling bifurcation or by a symmetry-
breaking pitchfork bifurcation, depending on the valueddofHowever, in contrast with the normal SP the
inverted SP, withd= 7 is observed to become stable Aads increased above a critical value by a pitchfork
bifurcation, but it also destabilizes for a higher critical valu&dfy a period-doubling bifurcation. All of these
experimental results agree well with numerical results obtained using the Floquet theory.
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PACS numbgs): 05.45:+b, 03.20+i

l. INTRODUCTION However, so far only the case 6f=0 (i.e., the cas®4.=0)
) _ has been studied in experiments on the magnetic pendulum.
We consider a permanent magnet of dipole moment | this paper, we experimentally study bifurcations asso-

placed in a periodically time-varying magnetic fi@d1-3].  cjated with the stability of the stationary poin@®P’s in the
Ilts motion can be described by a second-order nonautongsarametrically forced magnetic pendulum by varying the

mous ordinary differential equation, normalized natural frequend® and the normalized driving
. ] ) amplitudeA, and then compare the experimental results with
16+ b6o+m(Byct Bysinwt)sing=0, (1) the numerical results obtained using the Floquet thEbey.

) o ) We first note that the magnetic pendulum has two SP’s. One
where the overdot denotes the differentiation with respect t(IJS the “normal” SP with (x )-()_(0 0), and the other one is
time, 6 is the angle between the magnet and the magnetic — ~ ) ] T e
field, | is the moment of inertia about a rotation atisis the ~ the “inverted” SP with ,x)=(3,0). For the case of the
damping parameteB,. is the steady dc componet Bf and ~ “unforced” simple magnetic penduluniwith A=0), the
Bac and w are the amp"tude and frequency of the Sinusoi_normal SP is Stable, while the inverted SP is unstable. How-

da"y time_varying ac component ﬁ, respective|y_ Makmg ever, asA is increased above a critical value, the normal SP

the normalizationwt— 27t and 89— 27X, we have loses its stability. Using the Floquet theory, bifurcations oc-
curring at such critical values have been numerically studied
X+ 2 yx+ 27(Q%+ Asin2mt)sin2mx =0, (2) by one of usKim) and Leg{7]. In contrast to the normal SP,

the inverted SP gains its stability whénexceeds a critical
where  wy=VmBy/l, Q=wy/w, 7y=blle, and vglue[ll_—lﬂ. We also study numerically bifurcations asso-
A=mB,./l w2. Note that this is just a normalized equation ciated with stability of the inverted SP using the Floquet
of motion for the parametrically forced gravitational pendu-theory for a comparison with the experimental results.
lum with a vertically oscillating suppoift4—9]. Hence this This paper is organized as follows. We first explain the
magnetic system can be taken as a model of the parametfxperimental setup for the parametrically forced magnetic
cally forced pendulum equation. Hereafter we will call this Pendulum in Sec. Il. Bifurcations of the two SP'’s are then
magnetic oscillator a parametrically forced magnetic penduex_pe_nmentally |nvest|gateq_|n Sec. lll. It is observed that as
lum. A is increased beyond a critical value, the normal SP loses its
The parametrically forced pendulum, albeit simple look-Stability either by a period-doubling bifurcation or by a
ing, shows a richness in its dynamical behavior. As the norSymmetry-breaking pitchfork bifurcation, depending on the
malized driving amplitudeA is increased, transitions from Vvalues of€). For the case of the period-doubling bifurcation,
periodic attractors to chaotic attractors, and vice versa, coex@ New stable symmetric orbit with period 2 is born, while for
istence of different attractors, transient chaos, multipldhe case of the symmetry-breaking pitchfork bifurcation a
period-doubling transitions to chaos, and so on have beefPnjugate pair of new stable asymmetric orbits with period 1
numerica”y founc[5_7]_ Some of them have also been ob- appears. In contrast to the normal SP, the inverted SP is
served in real experiments on the parametrically forced magobserved to gain its stability wheh exceeds a first critical
netic pendulum[1-3] and gravitational penduluni8,d]. value AT by a pitchfork bifurcation, but it also destabilizes
for a higher second critical valug% of A by a period-
doubling bifurcation. Thus the inverted SP becomes stable in
*Electronic address: sykim@cc.kangwon.ac.kr the interval betweemA} and A3 . Our experimental data
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tive dc componenB. of the total magnetic field is given by
Bei=Bgct Be . the natural frequencw, in Eq. (2) be-
comes wo=/(m/1)Bes, Where m/I=2.542 G 1s2 and
Beg n=0.223 G[16].
A damping force proportional to the angular velocity can
E be supplied by an eddy current brake. Such eddy-current
damping is adjusted by controlling the separation between
the aluminum damping plate and the horseshoe magnet with
a micrometer screw. It is also possible to determine a damp-
ing parametek (=b/2l) and the natural frequency, by
fitting a sampled time serieg(t) for the unforced case of
Bac=0 to an equationp(t)=Ce *cos(/w3—k? t+5) (C
and 6 are some constantswhich is just the angle in the case
of the underdamped motion of the unforced magnetic pendu-
lum for small angular displacements.
| For data acquisition and experimental control, we use
commercial products “Rotary Motion Sensor” and “Signal
FIG. 1. Exploded view of a parametrically forced magnetic pen_lnterface,” manufactured l_:)y the Pasco SC|en'F|f|c. A Pasco
dulum. Labeled components are the aluminum damping piaye ( Model CI-6538 rotary motion sensor set consists of a code
the horseshoe magnet controlled by a micromeRY, the code Wheel with 1440 slotsi.e., a disk with an angular code in the
wheel (C), the encoder module), the Helmholtz coil for produc-  form of sectors which are pervious or impervious to light
tion of a steady dc component of a spatially uniform magnetic field@nd an encoder module containing a light-emitting diode
B (E), the Helmholtz coil for production of a sinusoidally time- (LED) and two photodiodes with signal-processing circuitry.
varying ac component oB (F), and the permanent bar magnet As the code wheel moves, the light signal emitted from the
(G). LED is interrupted by the slots, and electrically encoded.
Thus a code wheel with 1440 slots can generate raw data
show a good agreement between experimental and numerioaith a resolution ofA §=0.004 rad. A personal computer

A&

results. Finally, Sec. IV gives a summary. equipped with a Pasco model CI-6560 signal interface unit
analyzes the signals from the rotary motion sensor and pro-
Il. EXPERIMENTAL SETUP vides an easy-to-use data set &f4) at a chosen sampling

: . . rate. It also performs a convenient experimental control.
An exploded view of the experimental apparatus is shown

in Fig. 1. The physical magnetic pendulum consists of a

permanent bar magnet, an aluminum damping plate, and a lll. BIFURCATIONS OF THE NORMAL
code wheel, which are coaxially attached to a rotation axis. AND INVERTED SP'S

This magnetic pendulum shows rich dynamical behavior in a
periodically time-varying magnetic field, generated by wit
Helmholtz coils. Each component of the apparatus is ex
plained in some detail below.

A permanent bar magnet, glued to a rotation axis guide
by a small ball in the lowest part, and by a tiny pin in the
highest part, is placed in the center of two sets of Helmholtz
coils, producing the magnetic fielB perpendicular to the A. Bifurcation analysis based on the Floquet theory

rotation axis. The number of turié and the radius for a The normalized second order ordinary differential equa-
large set of Helmholtz coils arBl=130 andR=10.8 cm, tion (2) is reduced to two first order ordinary differential
while they areN=144 andR=5.8 cm for a smaller set of equations
Helmholtz coils. The large set of Helmholtz coils is given a
direct current 4. to supply a steady dc componeBy, of B. X=Y, (3a)
On the other hand, the smaller set of Helmholtz coils, which
is nested inside the large set and driven by a Pasco model .
CI-6552A ac power amplifier, provides a sinusoidally time- y
varying ac component oB with amplitude B,. and fre- ) . . )
quecny w. This amplifier can handle currents up to 1 A. I"€se equations have an inversion symmeansince the
Since higher currents are necessary in some range, ofe  ransformation
also use a current booster to increase the current up to 2 A.

We take into account the effect of the normal component SIX— =X, y—=—y, t—t (4)
Be , of the Earth’s magnetic fiel@g perpendicular to the
rotation axis, and align both dc and ac components of théeaves Eq.(3) invariant. If an orbitz(t) [=(x(t),y(t))] is
applied magnetic field parallel toBg ,. The angle of the invariant undes, it is called a symmetric orbit. Otherwise, it
permanent bar magnet is experimentally measured from thiss called an asymmetric orbit, and has its “conjugate” orbit
aligned directior(i.e., the direction 0B ,). Since the effec-  SAt) [ =(—x(t),—y(t))].

In this section we first analyze the bifurcations associated
h stability of the SP’s in the parametrically forced mag-
netic pendulum, using the Floguet theory. The experimental
results for the cases of the normal and inverted SP’s are then
?)resented and compared with the numerical results.

=—2myy—2m(Q%+ Asin2mt)sin2mx. (3b)
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The Poincarenaps of an initial poingz, [=(x(0),y(0))] plex values with moduli larger than unjtyand hence Hopf
can be computed by sampling the orbit poigtsat the dis-  bifurcations do not occur. Consequently, the fixed point can
crete timet=m, wherem=1,2,3... . Wecall the transfor- lose its stability only when a Floquet multipliar decreases
mation z,—Zzy,., the Poincare(time-1) map, and write (increasesthrough—1 (1) on the real axis.

Zm+1=P(zy). Note that the normal and inverted SP’s of the  When a Floquet multiplieh decreases through 1, the
parametrically forced magnetic pendulum, denotedzky ﬁxhe_0|hI0|0in(tj |Oseiit5b§t?]b”]ity via peri%(il-doubling k_)ifurck:)z_itionh
_ s 1 . , . which leads to the birth of a new stable symmetric orbit wit
[=(0,0)] "_md?' [_(2’0),]’ reSp?CtIYGIX’ are tAhe f|x?d points period 2. On the other hand, when a Floquet multipher

of the Poincaremap P [i.e., P(2)=z (z=2y,2)] with pe-  jncreases through 1, it becomes unstable via pitchfork bifur-
riod 1. . ) ) ) ) ) __cation, which results in the birth of a conjugate pair of stable

Here we investigate b|furcat|c_)ns ass_omated W|th_ Stab"'tyasymmetric orbits with period 1. Since the newly born orbits
of the two normal and inverted fixed points Bf The linear  5re asymmetric ones, the pitchfork bifurcation is also called a
stability of a fixed point is determined from the linearized- symmetry-breaking bifurcation. For more details on bifurca-
map matrixM of P at z. Using the Floquet theorj10], we tions, refer to Ref[18].
obtain the matrixM by integrating the linearized differential The stability boundaries of the normal and inverted SP’s
equations for small perturbations as follows. Consider an inin some ranges of th€-A plane are determined through
finitesimal perturbatiorj 6x(t),dy(t)] to a SP. Linearizing numerical calculations of their Floquet multipliexss. The
Eg. (3) about the SP, we obtain absolute value ofh at such stability boundaries is (Le.,

) IN\|=1). If \=—1, then the boundary is a period-doubling

ox oX bifurcation line. Otherwise, it is a symmetry-breaking pitch-
( ) _‘](t)( ) (3 fork bifurcation line. We also obtain the bifurcation diagrams
and the phase-flow and Poincarap plots numerically at
where some chosen parameter values for clear visual representation
of the bifurcations. All of these numerical results are given in
0 1 the next two subsectionsee Figs. 2-j7for a comparison
)- (6)  with the experimental results.

J(t)= ~
® (—4772(02+Asin277t)00527-rx —2my

Here x=0 and for the normal and inverted SP's, respec- B. Experimental results for the case of the normal SP

tively. Note thatJ is a 2xX2 1-periodic matrix[i.e., In all the experiments for normal and inverted SP’s, we
J(t+1)=J(t)]. Let W(t)=[w?(t),w?(t)] be a fundamental fix the the driving frequencw in Eq. (1), and the normalized
solution matrix withw(0)=1. Herew?(t) andw?(t) are two  damping parametey in Eq. (2), asw=2m and y=0.1, re-
independent solutions expressed in column vector forms, angpectively. We then control the normalized natural frequency
| is the 2x2 unit matrix. Then a general solution of the and driving amplitud&€) andA in Eq. (2) by varyingBg4. and

1-periodic system has the following form: B.c, respectively, and study the bifurcations of the two SP’s.
We consider two ranges of)l for the normal SP,

X)) ox(0) 1:0.2<0=<0.5 and 11:0.8<Q=<1.025. For each chosen
sy(t)) v Sy(0)/)" @) value of (), we increase the amplitudd, and observe

whether the SP is stable or not. In order to determine the
Substitution of Eq(7) into Eq. (5) leads to an initial-value stability of the SP experimentally, we release the magnetic

problem in determiningV(t): pendulum from rest at a small initial angle displaced from
) the SP. If the SP is stable, then the subsequent motion damps
W(t)=J(t)W(t), W(0)=I. (8) toward the SP. Otherwise, it deviates from the SP. Thus we

) o . ) measure a critical valuédg,, of A experimentally, above
It is clear from Eq.(7) thatW(1) is just the linearized-map \yhich the SP is unstable.

matrix M. Hence the matriM can be obtained through nu- \ye first study the bifurcations of the normal SP in the

merical integration of Eq(8) over the period 1. _ first rangel of Q. As an example, consider the case of
The characteristic equation of the numerically obtaiMed ()=0.4. With increasingA, we carry out the experiments,
IS and measure the critical valug,,. It is observed that for
* .
A2—trM\ +detM =0, 9) A>Ag, the SP becomes unstable through a period-

doubling bifurcation, giving rise to the birth of a new stable
where tM and deM denote the trace and determinantdf ~ Symmetric period-doubled orbit. For a visual representation
respectively. The eigenvaluas and\, of M are called the of the bifurcation, we pbtain the bifurcation diagram and the
Floguet(stability) multipliers, characterizing the stability of Phase-flow and Poincareap plots below.
the fixed point. It was also shown in R¢L7] that the deter- For phase representation, we acquire a data set of
minant of M is given by detM =e 2. Hence the pair of [6(t),8(t)] at a fixed sampling rate of 20 Hz, and convert it
Floguet multipliers of the fixed point lies either on the circle into a normalized set ofx(y). This whole set of the data is
of radiuse™ "” or on the real axis in the complex plane. The used for a phase-flow plot, while a partial set of the data
fixed point is stable only when both Floquet multipliers lie chosen at integral multiples of the external driving period
inside the unit circle. We first note that they never cross thd=2) [i.e.,t=nT (n=0,1,2 ...)] isused for a Poincare
unit circle except at the real axige., they never have com- map plot and for a bifurcation diagram.
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0. FIG. 3. Stability diagram of the normal SP in the 1st rahgd
he ] Q (i.e., 0.2<0=<0.5). The experimental data for the critical values
AgipiS, above which the SP becomes unstable, are represented by

0.4 I e— the solid circles. The stability boundary numerically determined
' ’ using the Floquet theory is denoted by the solid line, and it is just a
period-doubling bifurcation line.

FIG. 2. Period-doubling bifurcation of the normal SP for

(1=0.4. As shown in the bifurcation diagraf), the normal SP  manta| data, the stability boundary of the SP numerically
denoted by the solid circles becomes unstable for a critical Valu?:alculated using the Floguet theory is also denoted by the
Adxpt _(20'215) by a pgriod-gloubling bifurca_tion, which results in solid line in Fig. 3. This stability boundary is just a period-
the birth of a symmetric period-doubled orbit denoted by the sollddoubling bifurcation line at which a Floquet multiplier of the
circles. The experimental data for the phase flowAs¢0.23 are SP ish=—1. The period-doubling bifurcation line deter-
denoted by the small solid circles §h). Numerical data denoted by mined throuéh numerical computations lies a little below

the solid lines are also given in both) and (b). The data for the ) . . .
Poincaremaps in(b) are represented by the two large solid circles that experimentally determined. That is, the Value‘\gpt IS

for both the experimental and numerical cases. For more details, s&@mewhat higher than that @é,. This is what one would
the text. expect, because in real experiments there exists a frictional

force due to a contact between the rotation axis and its guid-

The bifurcation diagram fof2=0.4 is shown in Fig. @).  ers(ball and pin. As previously noted8,9], one of the main
The data obtained through numerical calculations are alseffects of this frictional force is to make the origin of the
given for a comaprison with the experimental results. NotePhase plané.e., the normal SPstable up to higher values of
that for the bifurcation diagram, the experimental data reprethe external driving amplitude than the numerically calcu-
sented by the solid circles agree well with the numerical datdated critical valueA?,.
denoted by the solid lines. For reference, the critical values We now study the bifurcations of the normal SP in the
obtained through experiments and numerical calculations argecond rangél of  (i.e., 0.8<=<1.025). As in the above

axp=0-215 andA; =0.198 13 . . ., respectively. AsA is  first rangel of (), we increase the amplitud® and measure
increased above the critical val#é , the normal SP loses its a critical valueAg,,, beyond which the SP becomes un-
stability via period-doubling bifurcation, and a new stablestable, by releasing the magnetic pendulum from rest at a
symmetric period-doubled orbit appears. Figutb) Zhows small initial angle displaced from the SP. However, in con-
the phase-flow and Poincaneap plots of the symmetric trast to the first range d® the normal SP is observed to lose
period-doubled orbit foA=0.23. The experimental data for its stability through a symmetry-breaking pitchfork bifurca-
the phase flow are represented by the small solid circlegjon for A=Ag,;, which leads to the birth of a conjugate pair
while the two larger solid circles denote the experimentalof new stable asymmetric orbits with period 1.
data for the Poincareap. These experimental data are also As an example, consider the case(bf 0.95. The bifur-
in a good agreement with the numerically computed data focation diagram for this case is shown in Figa¥ The nor-
the phase flow represented by the solid line and for the Poirmal SP denoted by the solid circles is observed to become
caremap denoted by the two large circles. unstable through a symmetry-breaking pitchfork bifurcation

We also perform the above experiments for many othefor A;Xpt=1_25_ ForA>Agxpt, a pair of stable asymmetric
values ofQ in the first rangd, and thus measure the critical orbits of period 1 appears. One is represented by the solid
values A, /s. The stability diagram of the normal SP is circles, while its conjugate orbit is denoted by the open
shown in Fig. 3. The experimental data fngpt are repre- circles. Figure &) shows the phase-flow and Poincanep
sented by the solid circles, and they seem to lie on a smootplots of a conjugate pair of symmetry-broken orbits of period
stability boundary curve. For a comparison with the experi-1 for A=1.4. The small solid circles denote the phase flow
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o4l ‘\.8o0028000 e _ FIG. 5. Stability diagram of the normal SP in the second range
Il of Q (i.e., 0.8<()<1.025). The experimental data for the critical
08 | | LA valuesAg, s, above which the SP becomes unstable, are repre-

sented by the solid circles. The stability boundary numerically de-
termined using the Floquet theory is denoted by the solid line, and
it is just a symmetry-breaking pitchfork bifurcation line.

FIG. 4. Symmetry-breaking pitchfork bifurcation of the normal = _ | . . .
SP for=0.95. For a critical valua\l, (=1.25), the normal sp  Dility diagram for this case. The experimental data A,
denoted by the solid circles becomes unstable by a symmetryare denoted by the solid circles, while the stability boundary
breaking pitchfork bifurcation, as shown in the bifurcation diagramnhumerically computed using the Floquet theory is repre-
(). As a result of the bifurcation, a conjugate pair of asymmetricsented by the solid line. In contrast to the first rangeof
orbits of period 1 appears; one is denoted by the solid circles, whiléhe stability boundary is a symmetry-breaking pitchfork bi-
the other one is represented by the open circles. The experimenthrcation line at which a Floquet multiplier of the SP is
data for the phase flow of the two symmetry-broken orbits forA =1. We also note that as in the case of the first rdnglee
A=1.4 are denoted by the small solid and open circlegoinre-  value ofAg,is somewhat higher than that af;, because of

spectively. Numerical data for the two symmetry-broken orbits arehe frictional force between the rotation axis and its guiders.
also given in botha) and(b); one is denoted by the solid line, while

the other one is represented by the dotted line. The data for the
Poincaremaps in(b) are represented by the large solid and open
circles for both the experimental and numerical cases. For more In this subsection, we study the bifurcations associated
details, see the text. with stability of the inverted SP by increasiAgin a range of
0.2<0=0.5. In contrast to the normal SP, the inverted SP is

of an asymmetric “heart-shaped” orbit, while the small open©bserved to gain its stability when a 1st critical valie of
circles represent the phase flow of its conjugate “inverted iS exceeded by a subcritical pitchfork bifurcation. How-
heart-shaped” orbit. The data for the Poincanaps of the ~€Ver, asA is further mc_reased3 .the stabilized mve_r@ed SP is
two symmetry-broken orbits are also denoted by the Iargeﬁ'so observed to lose its stability for a second critical value
solid and open circles, respectively. This symmery-brokerz Of A through a period-doubling bifurcation. Thus the
case is in contrast to the symmetry-preserved ¢sse Fig. inverted SP becomes stable in the interval betw&grand
2(b)] in the first range ofQ). For a comparison with the A3 .
experimental results, the data obtained by numerical compu- As an example, we consider the case(b¥0.2. The bi-
tations are also given in Fig. 4. A& is increased above a furcation diagram for this case is shown in Fida6 The
critical valueAy, (=1.174 2@ . . . ), thenormal SP denoted unstable inverted SP denoted by the open circles is observed
by the solid line becomes unstable through a symmetryto become stable wheA is increased above a 1st critical
breaking pitchfork bifurcation, giving rise to the birth of a vaIueA;‘Xptll(=0.39). Using the Floquet theory, the unstable
conjugate pair of symmetry-broken orbits of period 1. Oneinverted SP denoted by the dashed line is also numerically
asymmetric orbit is represented by the solid line, while thefound to gain its stability foA>A} ;(=0.289 1@ . .. ) by
other one is denoted by the dotted line. As in the experimena subcritical pitchfork bifurcation, giving rise to the birth of
tal case, the data for the Poincanaps of the two asymmet- a conjugate pair of unstable asymmetric orbits with period 1,
ric orbits are denoted by the large solid and open circlesdenoted by the dashed lines. However, unfortunately the two
respectively. All of these experimental and numerical resultsymmetry-broken orbits born for this subcritical case cannot
seem to agree well. be experimentally observed, because they are unstable ones.
We also measure the critical valugg, ;s for many other  This is in contrast to the supercritical bifurcations occurring
values ofQ) in the second range Il. Figure 5 shows the sta-for the normal SP in the second range I1@f(for a super-

C. Experimental results for the case of the inverted SP
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circles, respectively. The lower and upper stability boundaries, nu-
merically computed using the Floquet theory and denoted by the
dashed and solid lines, are the symmetry-breaking pitchfork and
period-doubling bifurcation lines, respectively.
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FIG. 6. Bifurcations of the inverted SP fét=0.2. The bifur-
cation diagram fof) =0.2 is shown in@). In contrast to the normal
SP, the inverted SP denoted by the open circles is observed to
(=0.39). However, aé is further increased, the stabilized inverted respectivély. The inverted SP is observed to become stable in
SP denoted by the solid circles is also observed to lose its stabilit . * *
for a second critical valueA%, ., (=0.567) through a period- Yh.e Interval. b.et\NeerAexpm and Aexpr.o: Note .als.o that the

T : O expt2 » 9 PEMOT “\idth of this interval becomes smaller & is increased.
doubling bifurcation, giving rise to the birth of a symmetric perIOd_yence the stabilization of the inverted SP can be more easily

doubled orbit denoted by the solid circles. The experimental dat
for the phase flow of the period-doubled orbit #&=0.61 are de- observed for small values d?, compared to the cases of

noted by the small solid circles ifb). Numerical data denoted by Nigh € values. For a comparison with the experimental re-

the lines are also given in both) and(b): a stable orbit is denoted SUlts, numerical data obtained using the Floquet theory are

by a solid line, while an unstable orbit is represented by a dashe@lso given in Fig. 7. The lower stability boundafy,, ; de-

line. The data for the Poincareaps in(b) are represented by the noted by the dashed line is a subcritical pitchfork bifurcation

two large solid circles for both the experimental and numericalline, while the upper stability bounda#dy, , denoted by the

cases. For more details, see the text. solid line is a period-doubling bifurcation line. We note that
the agreement between the experimental and numerical re-

critical case, a pair of stable asymmetric orbits is born, whichs’UItS becomes better 45 is decreased.

can be experimentally observed as shown in FjgAé A is
further increased fromg, ., ;, the stabilized inverted SP de-
noted by the solid circles is observed to lose its stability by a = Bifurcations of normal and inverted SP’s in the parametri-
period-doubling bifurcation when a second critical valuecally forced magnetic pendulum are experimentally studied
Atpr2 (=0.567) is exceeded. F&x>AZ,, ,, a stable sym- by varying the two paramete@ andA. As A is increased
metric “butterfly-shaped” orbit of period 2 appears. Small above a critical value, the normal SP is observed to become
solid circles and the two larger solid circles in Fighp unstable either by a period-doubling bifurcation or by a
represent the phase flow and Poincarap of the symmetric symmetry-breaking pitchfork bifurcation, depending on the
orbit of period 2 forA=0.61, respectively. It is also numeri- values of(). In the 1st rangé of Q (i.e.,, 0.2<Q<0.5), a
cally found that the stabilized inverted SP denoted by thenew stable symmetric orbit with period 2 appears via period-
solid line becomes unstable for a second critical véijg,  doubling bifurcation, while a conjugate pair of new stable
(=0.5291®...) through a period-doubling bifurcation, asymmetric orbits with period 1 is born via symmetry-
giving rise to the birth of a symmetric orbit of period 2 breaking pitchfork bifurcation in the second range Il @f
denoted by the solid line. (i.e., 0.8<(Q1=<1.025). However, in contrast to this normal
We also carry out the above experiments for many othe6P, the inverted SP is observed to become stable whisn
values of(2, and thus measure the first and second criticaincreased above a first critical valu& by a subcritical
values, Ag, /S and Ag,, »s. Figure 7 shows the stability pitchfork bifurcation. Unfortunately a pair of asymmetric or-
diagram of the inverted SP. The experimental dataAfyr, ;  bits of period 1 born for this subcritical case cannot be ex-

IV. SUMMARY
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perimentally observed, because they are unstable one&. Aswith the numerical results obtained using the Floguet theory,
is further increased, the stabilized inverted SP is also obthey seem to agree well.

served to lose its stability for a second critical valhg by a
period-doubling bifurcation, giving rise to the birth of a new
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