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Bifurcations in a parametrically forced magnetic pendulum

Sang-Yoon Kim,* Seung-Ho Shin, Jaichul Yi, and Chi-Woong Jang
Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea

~Received 17 July 1997!

An experimental study of bifurcations associated with the stability of stationary points~SP’s! in a parametri-
cally forced magnetic pendulum, and a comparison of its results with numerical results, are presented. The
critical values for which the SP’s lose or gain their stability are experimentally measured by varying the two
parametersV ~the normalized natural frequency! andA ~the normalized driving amplitude!. It is observed that,
when the amplitudeA exceeds a critical value, the normal SP withu50 (u is the angle between the permanent
magnet and the magnetic field! becomes unstable either by a period-doubling bifurcation or by a symmetry-
breaking pitchfork bifurcation, depending on the values ofV. However, in contrast with the normal SP the
inverted SP, withu5p is observed to become stable asA is increased above a critical value by a pitchfork
bifurcation, but it also destabilizes for a higher critical value ofA by a period-doubling bifurcation. All of these
experimental results agree well with numerical results obtained using the Floquet theory.
@S1063-651X~97!06212-0#

PACS number~s!: 05.45.1b, 03.20.1i
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I. INTRODUCTION

We consider a permanent magnet of dipole momenm
placed in a periodically time-varying magnetic fieldB @1–3#.
Its motion can be described by a second-order nonauto
mous ordinary differential equation,

I ü1bu̇1m~Bdc1Bacsinvt !sinu50, ~1!

where the overdot denotes the differentiation with respec
time, u is the angle between the magnet and the magn
field, I is the moment of inertia about a rotation axis,b is the
damping parameter,Bdc is the steady dc componet ofB, and
Bac and v are the amplitude and frequency of the sinus
dally time-varying ac component ofB, respectively. Making
the normalizationvt→2pt andu→2px, we have

ẍ12pg ẋ12p~V21A sin2pt !sin2px50, ~2!

where v05AmBdc/I , V5v0 /v, g5b/Iv, and
A5mBac /Iv2. Note that this is just a normalized equatio
of motion for the parametrically forced gravitational pend
lum with a vertically oscillating support@4–9#. Hence this
magnetic system can be taken as a model of the param
cally forced pendulum equation. Hereafter we will call th
magnetic oscillator a parametrically forced magnetic pen
lum.

The parametrically forced pendulum, albeit simple loo
ing, shows a richness in its dynamical behavior. As the n
malized driving amplitudeA is increased, transitions from
periodic attractors to chaotic attractors, and vice versa, co
istence of different attractors, transient chaos, multi
period-doubling transitions to chaos, and so on have b
numerically found@5–7#. Some of them have also been o
served in real experiments on the parametrically forced m
netic pendulum@1–3# and gravitational pendulum@8,9#.

*Electronic address: sykim@cc.kangwon.ac.kr
561063-651X/97/56~6!/6613~7!/$10.00
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However, so far only the case ofV50 ~i.e., the caseBdc50)
has been studied in experiments on the magnetic pendu

In this paper, we experimentally study bifurcations as
ciated with the stability of the stationary points~SP’s! in the
parametrically forced magnetic pendulum by varying t
normalized natural frequencyV and the normalized driving
amplitudeA, and then compare the experimental results w
the numerical results obtained using the Floquet theory@10#.
We first note that the magnetic pendulum has two SP’s. O
is the ‘‘normal’’ SP with (x,ẋ)5(0,0), and the other one i

the ‘‘inverted’’ SP with (x,ẋ)5( 1
2 ,0). For the case of the

‘‘unforced’’ simple magnetic pendulum~with A50), the
normal SP is stable, while the inverted SP is unstable. H
ever, asA is increased above a critical value, the normal
loses its stability. Using the Floquet theory, bifurcations o
curring at such critical values have been numerically stud
by one of us~Kim! and Lee@7#. In contrast to the normal SP
the inverted SP gains its stability whenA exceeds a critical
value@11–15#. We also study numerically bifurcations ass
ciated with stability of the inverted SP using the Floqu
theory for a comparison with the experimental results.

This paper is organized as follows. We first explain t
experimental setup for the parametrically forced magne
pendulum in Sec. II. Bifurcations of the two SP’s are th
experimentally investigated in Sec. III. It is observed that
A is increased beyond a critical value, the normal SP lose
stability either by a period-doubling bifurcation or by
symmetry-breaking pitchfork bifurcation, depending on t
values ofV. For the case of the period-doubling bifurcatio
a new stable symmetric orbit with period 2 is born, while f
the case of the symmetry-breaking pitchfork bifurcation
conjugate pair of new stable asymmetric orbits with period
appears. In contrast to the normal SP, the inverted SP
observed to gain its stability whenA exceeds a first critica
value A1* by a pitchfork bifurcation, but it also destabilize
for a higher second critical valueA2* of A by a period-
doubling bifurcation. Thus the inverted SP becomes stabl
the interval betweenA1* and A2* . Our experimental data
6613 © 1997 The American Physical Society
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6614 56KIM, SHIN, YI, AND JANG
show a good agreement between experimental and nume
results. Finally, Sec. IV gives a summary.

II. EXPERIMENTAL SETUP

An exploded view of the experimental apparatus is sho
in Fig. 1. The physical magnetic pendulum consists o
permanent bar magnet, an aluminum damping plate, an
code wheel, which are coaxially attached to a rotation a
This magnetic pendulum shows rich dynamical behavior i
periodically time-varying magnetic fieldB, generated by
Helmholtz coils. Each component of the apparatus is
plained in some detail below.

A permanent bar magnet, glued to a rotation axis guid
by a small ball in the lowest part, and by a tiny pin in th
highest part, is placed in the center of two sets of Helmho
coils, producing the magnetic fieldB perpendicular to the
rotation axis. The number of turnsN and the radiusR for a
large set of Helmholtz coils areN5130 andR510.8 cm,
while they areN5144 andR55.8 cm for a smaller set o
Helmholtz coils. The large set of Helmholtz coils is given
direct currentI dc to supply a steady dc componentBdc of B.
On the other hand, the smaller set of Helmholtz coils, wh
is nested inside the large set and driven by a Pasco m
CI-6552A ac power amplifier, provides a sinusoidally tim
varying ac component ofB with amplitude Bac and fre-
quecnyv. This amplifier can handle currents up to 1
Since higher currents are necessary in some range ofV, we
also use a current booster to increase the current up to

We take into account the effect of the normal compon
BE,n of the Earth’s magnetic fieldBE perpendicular to the
rotation axis, and align both dc and ac components of
applied magnetic fieldB parallel toBE,n . The angle of the
permanent bar magnet is experimentally measured from
aligned direction~i.e., the direction ofBE,n). Since the effec-

FIG. 1. Exploded view of a parametrically forced magnetic pe
dulum. Labeled components are the aluminum damping plateA),
the horseshoe magnet controlled by a micrometer (B), the code
wheel (C), the encoder module (D), the Helmholtz coil for produc-
tion of a steady dc component of a spatially uniform magnetic fi
B (E), the Helmholtz coil for production of a sinusoidally time
varying ac component ofB (F), and the permanent bar magn
(G).
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tive dc componentBeff of the total magnetic field is given by
Beff5Bdc1BE,n , the natural frequencyv0 in Eq. ~2! be-
comes v05A(m/I )Beff, where m/I 52.542 G21 s22 and
BE,n50.223 G@16#.

A damping force proportional to the angular velocity c
be supplied by an eddy current brake. Such eddy-cur
damping is adjusted by controlling the separation betw
the aluminum damping plate and the horseshoe magnet
a micrometer screw. It is also possible to determine a da
ing parameterk ([b/2I ) and the natural frequencyv0 by
fitting a sampled time seriesu(t) for the unforced case o
Bac50 to an equation,u(t)5Ce2ktcos(Av0

22k2 t1d) (C
andd are some constants!, which is just the angle in the cas
of the underdamped motion of the unforced magnetic pen
lum for small angular displacements.

For data acquisition and experimental control, we u
commercial products ‘‘Rotary Motion Sensor’’ and ‘‘Signa
Interface,’’ manufactured by the Pasco Scientific. A Pas
model CI-6538 rotary motion sensor set consists of a c
wheel with 1440 slots~i.e., a disk with an angular code in th
form of sectors which are pervious or impervious to ligh!
and an encoder module containing a light-emitting dio
~LED! and two photodiodes with signal-processing circuit
As the code wheel moves, the light signal emitted from
LED is interrupted by the slots, and electrically encode
Thus a code wheel with 1440 slots can generate raw d
with a resolution ofDu50.004 rad. A personal compute
equipped with a Pasco model CI-6560 signal interface u
analyzes the signals from the rotary motion sensor and
vides an easy-to-use data set of (u,u̇) at a chosen sampling
rate. It also performs a convenient experimental control.

III. BIFURCATIONS OF THE NORMAL
AND INVERTED SP’S

In this section we first analyze the bifurcations associa
with stability of the SP’s in the parametrically forced ma
netic pendulum, using the Floquet theory. The experime
results for the cases of the normal and inverted SP’s are
presented and compared with the numerical results.

A. Bifurcation analysis based on the Floquet theory

The normalized second order ordinary differential equ
tion ~2! is reduced to two first order ordinary differentia
equations

ẋ5y, ~3a!

ẏ522pgy22p~V21A sin2pt !sin2px. ~3b!

These equations have an inversion symmetryS, since the
transformation

S:x→2x, y→2y, t→t ~4!

leaves Eq.~3! invariant. If an orbitz(t) @[„x(t),y(t)…# is
invariant underS, it is called a symmetric orbit. Otherwise,
is called an asymmetric orbit, and has its ‘‘conjugate’’ orb
Sz(t) @5„2x(t),2y(t)…#.
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56 6615BIFURCATIONS IN A PARAMETRICALLY FORCED . . .
The Poincare´ maps of an initial pointz0 @5„x(0),y(0)…#
can be computed by sampling the orbit pointszm at the dis-
crete timet5m, wherem51,2,3, . . . . Wecall the transfor-
mation zm→zm11 the Poincare´ ~time-1! map, and write
zm115P(zm). Note that the normal and inverted SP’s of t
parametrically forced magnetic pendulum, denoted byẑN

@[(0,0)# and ẑI @[( 1
2 ,0)#, respectively, are the fixed point

of the Poincare´ map P @i.e., P( ẑ)5 ẑ ( ẑ5 ẑN ,ẑI)] with pe-
riod 1.

Here we investigate bifurcations associated with stabi
of the two normal and inverted fixed points ofP. The linear
stability of a fixed point is determined from the linearize
map matrixM of P at ẑ. Using the Floquet theory@10#, we
obtain the matrixM by integrating the linearized differentia
equations for small perturbations as follows. Consider an
finitesimal perturbation@dx(t),dy(t)# to a SP. Linearizing
Eq. ~3! about the SP, we obtain

S d ẋ

d ẏ
D 5J~ t !S dx

dyD , ~5!

where

J~ t !5S 0 1

24p2~V21A sin2pt !cos2p x̂ 22pg D . ~6!

Here x̂50 and 1
2 for the normal and inverted SP’s, respe

tively. Note that J is a 232 1-periodic matrix @i.e.,
J(t11)5J(t)#. Let W(t)5@w1(t),w2(t)# be a fundamenta
solution matrix withW(0)5I . Herew1(t) andw2(t) are two
independent solutions expressed in column vector forms,
I is the 232 unit matrix. Then a general solution of th
1-periodic system has the following form:

S dx~ t !

dy~ t !
D 5W~ t !S dx~0!

dy~0!
D . ~7!

Substitution of Eq.~7! into Eq. ~5! leads to an initial-value
problem in determiningW(t):

Ẇ~ t !5J~ t !W~ t !, W~0!5I . ~8!

It is clear from Eq.~7! that W(1) is just the linearized-map
matrix M . Hence the matrixM can be obtained through nu
merical integration of Eq.~8! over the period 1.

The characteristic equation of the numerically obtainedM
is

l22trMl1detM50, ~9!

where trM and detM denote the trace and determinant ofM ,
respectively. The eigenvaluesl1 andl2 of M are called the
Floquet~stability! multipliers, characterizing the stability o
the fixed point. It was also shown in Ref.@17# that the deter-
minant of M is given by detM5e22pg. Hence the pair of
Floquet multipliers of the fixed point lies either on the circ
of radiuse2pg or on the real axis in the complex plane. Th
fixed point is stable only when both Floquet multipliers
inside the unit circle. We first note that they never cross
unit circle except at the real axis~i.e., they never have com
y

-

nd

e

plex values with moduli larger than unity!, and hence Hopf
bifurcations do not occur. Consequently, the fixed point c
lose its stability only when a Floquet multiplierl decreases
~increases! through21 (1) on the real axis.

When a Floquet multiplierl decreases through21, the
fixed point loses its stability via period-doubling bifurcatio
which leads to the birth of a new stable symmetric orbit w
period 2. On the other hand, when a Floquet multiplierl
increases through 1, it becomes unstable via pitchfork bi
cation, which results in the birth of a conjugate pair of sta
asymmetric orbits with period 1. Since the newly born orb
are asymmetric ones, the pitchfork bifurcation is also calle
symmetry-breaking bifurcation. For more details on bifurc
tions, refer to Ref.@18#.

The stability boundaries of the normal and inverted S
in some ranges of theV-A plane are determined throug
numerical calculations of their Floquet multipliersl ’s. The
absolute value ofl at such stability boundaries is 1~i.e.,
ulu51). If l521, then the boundary is a period-doublin
bifurcation line. Otherwise, it is a symmetry-breaking pitc
fork bifurcation line. We also obtain the bifurcation diagram
and the phase-flow and Poincare´-map plots numerically at
some chosen parameter values for clear visual represent
of the bifurcations. All of these numerical results are given
the next two subsections~see Figs. 2–7! for a comparison
with the experimental results.

B. Experimental results for the case of the normal SP

In all the experiments for normal and inverted SP’s, w
fix the the driving frequencyv in Eq. ~1!, and the normalized
damping parameterg in Eq. ~2!, asv52p andg50.1, re-
spectively. We then control the normalized natural frequen
and driving amplitudeV andA in Eq. ~2! by varyingBdc and
Bac, respectively, and study the bifurcations of the two SP

We consider two ranges ofV for the normal SP,
I :0.2<V<0.5 and II :0.8<V<1.025. For each chose
value of V, we increase the amplitudeA, and observe
whether the SP is stable or not. In order to determine
stability of the SP experimentally, we release the magn
pendulum from rest at a small initial angle displaced fro
the SP. If the SP is stable, then the subsequent motion da
toward the SP. Otherwise, it deviates from the SP. Thus
measure a critical valueAexpt* of A experimentally, above
which the SP is unstable.

We first study the bifurcations of the normal SP in t
first range I of V. As an example, consider the case
V50.4. With increasingA, we carry out the experiments
and measure the critical valueAexpt* . It is observed that for
A.Aexpt* , the SP becomes unstable through a peri
doubling bifurcation, giving rise to the birth of a new stab
symmetric period-doubled orbit. For a visual representat
of the bifurcation, we obtain the bifurcation diagram and t
phase-flow and Poincare´-map plots below.

For phase representation, we acquire a data se

@u(t),u̇(t)# at a fixed sampling rate of 20 Hz, and convert
into a normalized set of (x,y). This whole set of the data is
used for a phase-flow plot, while a partial set of the d
chosen at integral multiples of the external driving periodT
(52p) @i.e., t5nT (n50,1,2, . . . )] is used for a Poincare´-
map plot and for a bifurcation diagram.
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6616 56KIM, SHIN, YI, AND JANG
The bifurcation diagram forV50.4 is shown in Fig. 2~a!.
The data obtained through numerical calculations are
given for a comaprison with the experimental results. N
that for the bifurcation diagram, the experimental data rep
sented by the solid circles agree well with the numerical d
denoted by the solid lines. For reference, the critical val
obtained through experiments and numerical calculations
Aexpt* 50.215 andAnu* 50.198 131 . . . , respectively. AsA is
increased above the critical valueA* , the normal SP loses it
stability via period-doubling bifurcation, and a new stab
symmetric period-doubled orbit appears. Figure 2~b! shows
the phase-flow and Poincare´-map plots of the symmetric
period-doubled orbit forA50.23. The experimental data fo
the phase flow are represented by the small solid circ
while the two larger solid circles denote the experimen
data for the Poincare´ map. These experimental data are a
in a good agreement with the numerically computed data
the phase flow represented by the solid line and for the P
carémap denoted by the two large circles.

We also perform the above experiments for many ot
values ofV in the first rangeI , and thus measure the critica
values Aexpt* ’s. The stability diagram of the normal SP
shown in Fig. 3. The experimental data forAexpt* are repre-
sented by the solid circles, and they seem to lie on a smo
stability boundary curve. For a comparison with the expe

FIG. 2. Period-doubling bifurcation of the normal SP f
V50.4. As shown in the bifurcation diagram~a!, the normal SP
denoted by the solid circles becomes unstable for a critical va
Aexpt* (50.215) by a period-doubling bifurcation, which results
the birth of a symmetric period-doubled orbit denoted by the so
circles. The experimental data for the phase flow forA50.23 are
denoted by the small solid circles in~b!. Numerical data denoted b
the solid lines are also given in both~a! and ~b!. The data for the
Poincare´ maps in~b! are represented by the two large solid circl
for both the experimental and numerical cases. For more details
the text.
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mental data, the stability boundary of the SP numerica
calculated using the Floquet theory is also denoted by
solid line in Fig. 3. This stability boundary is just a perio
doubling bifurcation line at which a Floquet multiplier of th
SP is l521. The period-doubling bifurcation line dete
mined through numerical computations lies a little belo
that experimentally determined. That is, the value ofAexpt* is
somewhat higher than that ofAnu* . This is what one would
expect, because in real experiments there exists a frictio
force due to a contact between the rotation axis and its g
ers~ball and pin!. As previously noted@8,9#, one of the main
effects of this frictional force is to make the origin of th
phase plane~i.e., the normal SP! stable up to higher values o
the external driving amplitude than the numerically calc
lated critical valueAnu* .

We now study the bifurcations of the normal SP in t
second rangeII of V ~i.e., 0.8<V<1.025). As in the above
first rangeI of V, we increase the amplitudeA and measure
a critical valueAexpt* , beyond which the SP becomes u
stable, by releasing the magnetic pendulum from rest a
small initial angle displaced from the SP. However, in co
trast to the first range ofV the normal SP is observed to los
its stability through a symmetry-breaking pitchfork bifurc
tion for A5Aexpt* , which leads to the birth of a conjugate pa
of new stable asymmetric orbits with period 1.

As an example, consider the case ofV50.95. The bifur-
cation diagram for this case is shown in Fig. 4~a!. The nor-
mal SP denoted by the solid circles is observed to beco
unstable through a symmetry-breaking pitchfork bifurcati
for Aexpt* 51.25. ForA.Aexpt* , a pair of stable asymmetric
orbits of period 1 appears. One is represented by the s
circles, while its conjugate orbit is denoted by the op
circles. Figure 4~b! shows the phase-flow and Poincare´-map
plots of a conjugate pair of symmetry-broken orbits of peri
1 for A51.4. The small solid circles denote the phase fl

e

d

ee

FIG. 3. Stability diagram of the normal SP in the 1st rangeI of
V ~i.e., 0.2<V<0.5). The experimental data for the critical valu
Aexpt* ’s, above which the SP becomes unstable, are represente
the solid circles. The stability boundary numerically determin
using the Floquet theory is denoted by the solid line, and it is ju
period-doubling bifurcation line.
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56 6617BIFURCATIONS IN A PARAMETRICALLY FORCED . . .
of an asymmetric ‘‘heart-shaped’’ orbit, while the small op
circles represent the phase flow of its conjugate ‘‘inver
heart-shaped’’ orbit. The data for the Poincare´ maps of the
two symmetry-broken orbits are also denoted by the lar
solid and open circles, respectively. This symmery-brok
case is in contrast to the symmetry-preserved case@see Fig.
2~b!# in the first range ofV. For a comparison with the
experimental results, the data obtained by numerical com
tations are also given in Fig. 4. AsA is increased above
critical valueAnu* (51.174 209 . . . ), thenormal SP denoted
by the solid line becomes unstable through a symme
breaking pitchfork bifurcation, giving rise to the birth of
conjugate pair of symmetry-broken orbits of period 1. O
asymmetric orbit is represented by the solid line, while
other one is denoted by the dotted line. As in the experim
tal case, the data for the Poincare´ maps of the two asymmet
ric orbits are denoted by the large solid and open circ
respectively. All of these experimental and numerical res
seem to agree well.

We also measure the critical valuesAexpt* ’s for many other
values ofV in the second range II. Figure 5 shows the s

FIG. 4. Symmetry-breaking pitchfork bifurcation of the norm
SP forV50.95. For a critical valueAexpt* (51.25), the normal SP
denoted by the solid circles becomes unstable by a symme
breaking pitchfork bifurcation, as shown in the bifurcation diagra
~a!. As a result of the bifurcation, a conjugate pair of asymme
orbits of period 1 appears; one is denoted by the solid circles, w
the other one is represented by the open circles. The experim
data for the phase flow of the two symmetry-broken orbits
A51.4 are denoted by the small solid and open circles in~b!, re-
spectively. Numerical data for the two symmetry-broken orbits
also given in both~a! and~b!; one is denoted by the solid line, whil
the other one is represented by the dotted line. The data for
Poincare´ maps in~b! are represented by the large solid and op
circles for both the experimental and numerical cases. For m
details, see the text.
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bility diagram for this case. The experimental data forAexpt*
are denoted by the solid circles, while the stability bound
numerically computed using the Floquet theory is rep
sented by the solid line. In contrast to the first range ofV,
the stability boundary is a symmetry-breaking pitchfork b
furcation line at which a Floquet multiplier of the SP
l51. We also note that as in the case of the first rangeI , the
value ofAexpt* is somewhat higher than that ofAnu* because of
the frictional force between the rotation axis and its guide

C. Experimental results for the case of the inverted SP

In this subsection, we study the bifurcations associa
with stability of the inverted SP by increasingA in a range of
0.2<V<0.5. In contrast to the normal SP, the inverted SP
observed to gain its stability when a 1st critical valueA1* of
A is exceeded by a subcritical pitchfork bifurcation. How
ever, asA is further increased, the stabilized inverted SP
also observed to lose its stability for a second critical va
A2* of A through a period-doubling bifurcation. Thus th
inverted SP becomes stable in the interval betweenA1* and
A2* .

As an example, we consider the case ofV50.2. The bi-
furcation diagram for this case is shown in Fig. 6~a!. The
unstable inverted SP denoted by the open circles is obse
to become stable whenA is increased above a 1st critica
valueAexpt,1* (50.39). Using the Floquet theory, the unstab
inverted SP denoted by the dashed line is also numeric
found to gain its stability forA.Anu,1* (50.289 108 . . . ) by
a subcritical pitchfork bifurcation, giving rise to the birth o
a conjugate pair of unstable asymmetric orbits with period
denoted by the dashed lines. However, unfortunately the
symmetry-broken orbits born for this subcritical case can
be experimentally observed, because they are unstable o
This is in contrast to the supercritical bifurcations occurri
for the normal SP in the second range II ofV ~for a super-
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FIG. 5. Stability diagram of the normal SP in the second ran
II of V ~i.e., 0.8<V<1.025). The experimental data for the critic
valuesAexpt* ’s, above which the SP becomes unstable, are re
sented by the solid circles. The stability boundary numerically
termined using the Floquet theory is denoted by the solid line,
it is just a symmetry-breaking pitchfork bifurcation line.



ic

-
y
ue

ll

i-
th

,
2

he
ca

es,
le in

sily
f

re-
are

on

at
l re-

tri-
ied

me
a

he

od-
le
y-

al

r-
ex-

l
d

d
il

d-
a

y

h
e
ca

of
cal
lid
nu-
the
and

6618 56KIM, SHIN, YI, AND JANG
critical case, a pair of stable asymmetric orbits is born, wh
can be experimentally observed as shown in Fig. 4!. As A is
further increased fromAexpt,1* , the stabilized inverted SP de
noted by the solid circles is observed to lose its stability b
period-doubling bifurcation when a second critical val
Aexpt,2* (50.567) is exceeded. ForA.Aexpt,2* , a stable sym-
metric ‘‘butterfly-shaped’’ orbit of period 2 appears. Sma
solid circles and the two larger solid circles in Fig. 6~b!
represent the phase flow and Poincare´ map of the symmetric
orbit of period 2 forA50.61, respectively. It is also numer
cally found that the stabilized inverted SP denoted by
solid line becomes unstable for a second critical valueAnu,2*
(50.529 159 . . . ) through a period-doubling bifurcation
giving rise to the birth of a symmetric orbit of period
denoted by the solid line.

We also carry out the above experiments for many ot
values ofV, and thus measure the first and second criti
values,Aexpt,1* ’s and Aexpt,2* ’s. Figure 7 shows the stability
diagram of the inverted SP. The experimental data forAexpt,1*

FIG. 6. Bifurcations of the inverted SP forV50.2. The bifur-
cation diagram forV50.2 is shown in~a!. In contrast to the norma
SP, the inverted SP denoted by the open circles is observe
become stable asA is increased above a 1st critical valueAexpt,1*
(50.39). However, asA is further increased, the stabilized inverte
SP denoted by the solid circles is also observed to lose its stab
for a second critical valueAexpt,2* (50.567) through a period-
doubling bifurcation, giving rise to the birth of a symmetric perio
doubled orbit denoted by the solid circles. The experimental d
for the phase flow of the period-doubled orbit forA50.61 are de-
noted by the small solid circles in~b!. Numerical data denoted b
the lines are also given in both~a! and~b!; a stable orbit is denoted
by a solid line, while an unstable orbit is represented by a das
line. The data for the Poincare´ maps in~b! are represented by th
two large solid circles for both the experimental and numeri
cases. For more details, see the text.
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and Aexpt,2* are represented by the open and solid circl
respectively. The inverted SP is observed to become stab
the interval betweenAexpt,1* and Aexpt,2* . Note also that the
width of this interval becomes smaller asV is increased.
Hence the stabilization of the inverted SP can be more ea
observed for small values ofV, compared to the cases o
high V values. For a comparison with the experimental
sults, numerical data obtained using the Floquet theory
also given in Fig. 7. The lower stability boundaryAnu,1* de-
noted by the dashed line is a subcritical pitchfork bifurcati
line, while the upper stability boundaryAnu,2* denoted by the
solid line is a period-doubling bifurcation line. We note th
the agreement between the experimental and numerica
sults becomes better asV is decreased.

IV. SUMMARY

Bifurcations of normal and inverted SP’s in the parame
cally forced magnetic pendulum are experimentally stud
by varying the two parametersV andA. As A is increased
above a critical value, the normal SP is observed to beco
unstable either by a period-doubling bifurcation or by
symmetry-breaking pitchfork bifurcation, depending on t
values ofV. In the 1st rangeI of V ~i.e., 0.2<V<0.5), a
new stable symmetric orbit with period 2 appears via peri
doubling bifurcation, while a conjugate pair of new stab
asymmetric orbits with period 1 is born via symmetr
breaking pitchfork bifurcation in the second range II ofV
~i.e., 0.8<V<1.025). However, in contrast to this norm
SP, the inverted SP is observed to become stable whenA is
increased above a first critical valueA1* by a subcritical
pitchfork bifurcation. Unfortunately a pair of asymmetric o
bits of period 1 born for this subcritical case cannot be

to

ity

ta

ed

l

FIG. 7. Stability diagram of the inverted SP in the range
0.2<V<0.5. The experimental data for the first and second criti
values,Aexpt,1* and Aexpt,2* , are represented by the open and so
circles, respectively. The lower and upper stability boundaries,
merically computed using the Floquet theory and denoted by
dashed and solid lines, are the symmetry-breaking pitchfork
period-doubling bifurcation lines, respectively.
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perimentally observed, because they are unstable ones.A
is further increased, the stabilized inverted SP is also
served to lose its stability for a second critical valueA2* by a
period-doubling bifurcation, giving rise to the birth of a ne
stable symmetric period-doubled orbit. Thus the inverted
becomes stable in the interval betweenA1* andA2* . When all
of these experimental results for the two SP’s are compa
cs

tt

D

-

b-

P

d

with the numerical results obtained using the Floquet theo
they seem to agree well.
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